
В современной промышленности постоянно ужесточаются требования к качеству металлических изделий. Они повышают устойчивость конструкций к высоким температурам, увеличивают срок их службы и циклическую долговечность.
Однако обработка таких материалов стандартными механическими методами осложнена их твердостью. Решением может стать применение проволочно-вырезной электроэрозионной обработки. Она основана на получении детали нужной формы и размера за счет электрических импульсов. При внедрении такого способа в производство важно понимать, как именно он воздействует на тот или иной материал.
Ученые Передовой инженерной школы ПНИПУ экспериментально исследовали особенности образования дефектов на поверхностном слое при обработке изделий из нового жаропрочного никелевого сплава, который широко используется в авиационной и космической промышленности. Полученные результаты позволят получать промышленные авиационные изделия с высоким качеством поверхности и повышенной устойчивостью к нагрузкам. Исследование выполнено за счет гранта Российского научного фонда (№ 23-79-01224).
Жаропрочные сплавы нового поколения — это современные материалы, обладающие повышенной устойчивостью к высоким температурам, внешним нагрузкам и окислению, что делает их незаменимыми в высокотехнологичных отраслях, таких как авиастроение и энергетика. При этом их твердость сильно влияет на точность обработки изделий механическими способами. В процессе резания быстро изнашивается инструмент и выделяется большое количество тепла, из-за чего страдает качество итогового продукта.
В качестве альтернативного метода эффективна проволочно-вырезная электроэрозионная обработка. Это распространенная сегодня технология, которая позволяет создавать детали сложных форм и разных размеров. По заданной программе проволока под действием электрических разрядов плавит материал и формирует нужный контур на металлической заготовке.Новости по теме
Технология подходит для сплавов любой твердости. Однако в процессе воздействия на металл кратковременными импульсами на поверхности образовывается наружный белый слой. Он обладает совсем другими значениями твердости по сравнению с основным материалом. На нем могут собираться остаточные напряжения, возникать трещины и другие поверхностные дефекты, которые в дальнейшем способствуют разрушению всего изделия. Величина дефектного слоя зависит от применяемых режимов обработки. Поэтому важно исследовать, как они влияют на его формирование и на качество поверхности.
В ходе экспериментов политехники изготовили несколько образцов разной высоты (10 и 15 мм) и выполнили их обработку при минимальном и максимальном времени воздействия электрического импульса (21 и 30 микросекунды). Затем детально исследовали поверхностный слой образцов.
«Мы установили, что при проволочно-вырезной электроэрозионной обработке величина дефектного белого слоя остается стабильной на обоих режимах и составляет 10 микрометров. Изменение параметров почти не сказывается на глубине его образования. Однако происходят изменения в его структуре и параметров шероховатости. Так, при кратковременном действии импульса (21 микросекунды) поверхностных дефектов в виде пор и трещин нет, но при увеличении энергии импульса (30 микросекунды) материал плавится интенсивнее и формируются различные неровности и микротрещины», — рассказал Тимур Абляз, директор Высшей школы авиационного двигателестроения ПНИПУ, кандидат технических наук.
От высоты заготовок также зависит качество поверхности. С ее увеличением от 10 до 15 мм образование микротрещин происходит интенсивней вне зависимости от мощности режима, и их размеры достигают в длину 50-60 микрометров. Значения шероховатости также увеличиваются в зависимости от высоты образца от 1,62 до 3,4 мкм по параметру Ra (один из ключевых показателей для оценки и контроля шероховатости поверхности).
Таким образом, результаты показали, что добиться бездефектного верхнего слоя с низкими значениями параметра шероховатости можно, контролируя подачу энергии электрического импульса и высоту самих заготовок.
По сообщению пресс-службы ПНИПУ